

Let's C what we can do:

Reversing energy emissions scalably with atmospheric CO₂ to solid-phase carbon

Dr. Elizabeth Shoenfelt Troein ARPA-E Fellow

ARPA-E Energy Innovation Summit – Denver, CO – Tuesday, May 24th, 2022

Natural cycles took carbon out of the atmosphere over millions of years. Humans have been undoing it for 300 years to extract energy.

Natural cycles took carbon out of the atmosphere over millions of years. Humans have been undoing it for 300 years to extract energy.

As we scale carbon removal, we must also scale carbon storage.

Key:

- \star CO₂ removal targets
- dedicated subsurface
 CO₂ storage, to date
- dedicated subsurface
 CO₂ storage, projected

Estimates and future scenarios based on:

Martin-Roberts *et al.*, 2021. https://doi.org/10.1016/j.oneear.20 21.10.002

National Academies of Sciences, Engineering, and Medicine, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda, 2019.

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

Solid storage as carbonates

 $Ca+CO_2\rightarrow CaCO_3^*$

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

Solid storage as carbonates

 $Ca+CO_2 \rightarrow CaCO_3^*$

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

*balanced: CaSiO₃+CO₂→CaCO₃+SiO₂
Rob Lavinsky, iRocks.com – CC-BY-SA-3.0, CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Solid storage as carbonates

 $Ca+CO_2 \rightarrow CaCO_3^*$

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

*balanced: CaSiO₃+CO₂→CaCO₃+SiO₂
Rob Lavinsky, iRocks.com – CC-BY-SA-3.0, CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

Requires class VI wells

*balanced: CaSiO₃+CO₂→CaCO₃+SiO₂
Rob Lavinsky, iRocks.com – CC-BY-SA-3.0, CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

No stoichiometric mining requirements (Ca, Mg, P)

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

No stoichiometric mining requirements (Ca, Mg, P)

No infrastructure/transport limitations

Solid storage as carbonates

Solid storage as biochar

Subsurface pore space storage as supercritical CO₂

No stoichiometric mining requirements (Ca, Mg, P)

No infrastructure/transport limitations

No arable land requirements

borenandkingminerals.com

Nocera lab, MIT. Photo: Dominick Reuter

Dorna Esrafilzadeh et al., Nature Communications, 2019. https://doi.org/10.1038/s41467-019-08824-8

borenandkingminerals.com

Nocera lab, MIT. Photo: Dominick Reuter

Dorna Esrafilzadeh et al., Nature Communications, 2019. https://doi.org/10.1038/s41467-019-08824-8

Alternate minerals

borenandkingminerals.com

Nocera lab, MIT. Photo: Dominick Reuter

Dorna Esrafilzadeh *et al.*, Nature Communications, 2019. https://doi.org/10.1038/s41467-019-08824-8

Alternate minerals

Artificial photosynthesis

borenandkingminerals.com

Nocera lab, MIT. Photo: Dominick Reuter

Dorna Esrafilzadeh *et al.*, Nature Communications, 2019. https://doi.org/10.1038/s41467-019-08824-8

Alternate minerals

Artificial photosynthesis

Catalytic CO₂ to solid carbon

Dorna Esrafilzadeh *et al.*, Nature Communications, 2019. https://doi.org/10.1038/s41467-019-08824-8

Can we achieve carbon-containing compounds that are:

- energy- and emissions-efficient
- solid-phase
- permanent

Do you have ideas on how we can achieve "infinitely scalable" carbon storage? Let's talk!

elizabeth.troein@hq.doe.gov

